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Abstract: The performance of a newly developed low Reynolds number second order closure for viscoelastic fluids is compared with 
that of an existing k-ε model using experimental data for fully-developed flow of various polymer solutions in circular pipes of 
Escudier et al. (1999) and Resende et al. (2005). New developments were made to account separated flows, removing the 
dependence of the velocity gradient by the friction velocity in the recirculation zone. The fluids simulated are the following aqueous 
polymeric solutions: 0.125% by weight of polyacrilamide (PAA), 0.2% of xantham gum (XG), 0.25% of carboxymethyl cellulose 
(CMC) and a blend of 0.09% CMC and 0.09% XG. As far as the rheological constitutive equation is concerned, both models are 
based on modified generalized Newtonian model developed by Pinho (2003), and wall approximation effects required by the low 
Reynolds number approach are taken into account by the damping function developed by Cruz and Pinho (2003), which includes 
effects of shear thinning and Trouton ratio thickening. 
The low Reynolds Reynolds stress model is seen to perform better than the k- ε model both in terms of mean flow quantities (friction 
factor and mean velocity) as well as the Reynolds stress predictions. 
 
Keywords: Turbulence model, drag reduction, polymer solutions, second order closure. 

 
1. Introduction 
 

A Reynolds stress model is developed to predict turbulent flows with viscoelastic fluids and is tested here in fully-
developed channel flows of polymer solutions. First-order turbulence models have shortcomings when it comes to 
predicting flows with separation or streamline curvature, amongst other things (see an early revision in Patel et al. 
(1984)). In addition, viscoelastic fluids in duct flows exhibit stronger anisotropy of the Reynolds stress tensor than 
Newtonian fluids do, which further accentuates the shortcomings of some first-order closures to properly deal with 
them. The use of anisotropic first-order models can offset some of these disadvantages (Park et al. (2003), Craft et al. 
(1996)). Now that simple first-order turbulence closures are available for viscoelastic fluids (Resende et al. (2006)), and 
have been tested in duct flow, it is time to evolve to higher-order closures which will enable the handling of more 
complex flows, such as flows with separation.  

The first turbulence models for viscoelastic fluids date from the 1970’s with Mizushina et al. (1973), Durst and 
Rastogi (1977) and Poreh and Hassid (1978). Their scope was rather limited because they depended on parameters that 
needed to be selected for each fluid in each flow situation. In the 1980’s new turbulence models appeared (Politis 
(1989), Malin (1997)), but were limited to the inelastic fluids of variable viscosity. To overcome this limitation Pinho 
(2003) and Cruz and Pinho (2003) developed a turbulence model using a modified version of the generalized 
Newtonian constitutive equation in order to account elastic effects and therefore introduce rheological parameters into 
the turbulence model. Subsequent developments of that model were introduced by Cruz et al. (2004) and Resende et al. 
(2006). 

The present Reynolds stress closure is a step forward in the hierarchy of models for viscoelastic fluids and is based 
on the model of Lai and So (1990) for Newtonian fluids. This model was selected because it combined simplicity with a 
low Reynolds number capability, essential for use with viscoelastic fluids for which no universal law of the wall exists. 
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The performance of the model is tested against experimental data for dilute polymeric aqueous solutions of Escudier et 
al. (1999) and Resende et al (2006). 

The next section presents the governing equations for viscoelastic turbulent flow. The terms requiring modeling are 
identified in the Section 3 with the corresponding closures. The results of the numerical simulations and their discussion 
are presented in Section 4. The paper closes with a summary of the main conclusions. 
 
2. Governing equations 
 

The governing equations are the continuity and momentum equations and the Reynolds stress is calculated by its 
transport equation. The extra stress of the fluid is given by a generalized Newtonian constitutive equation modified by 
Pinho (2003). The momentum equation is 
 

( )2 2i i
k ik i k ik

k i k

U U pU S u u s
t x x x

ρ ρ µ ρ µ∂ ∂ ∂ ∂ ′+ = − + − +
∂ ∂ ∂ ∂

 (1) 

 
where p is the pressure, ρ is the densit, µ  is the average molecular viscosity, ui is the i-velocity component and Sij is the 
rate of deformation tensor defined as Sij ≡ ui, j + uj ,i( ) 2 . Here, and elsewhere, small letters or a prime indicate 

fluctuations, capital letters or an overbar designate time-average quantities and a hat is used for instantaneous values.  
The average molecular viscosity (µ ) is given by equation (2) which combines the pure viscometric shear viscosity 
contribution ( Vη ) in Eq. (3), with the high Reynolds number time-average molecular viscosity contribution ( hµ ) of Eq. 
(4). 
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where [ ] ( ) ( )1 1 1 22m n m n m

v eB K K Aε ρ−  − − +  = , ( ) ( )2m n p n p= + − + , Kv and n are the power law parameters, , fv is a 
damping function equal to fµ and k and ε represent the turbulent kinetic energy and its rate of dissipation, respectively. 
This model for µ  was derived by Pinho (2003). 

The pseudo- elastic stress in the momentum equation ( 2 iksµ′ ) and the new terms of the transport equation for 

Reynolds stress ( i ku uρ ) require specific modelling which is presented in the next section. 
The transport equation for Reynolds stress is 
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3. Closures for non-Newtonian terms 
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We start with the two molecular related stresses in the momentum equation. Term 2 iksµ′  was designated a pseudo-
elastic stress by Cruz et al. (2004) where a closure was proposed in the context of their k-ε model. Inspired by their 
derivation, we propose here an extended version consistent with the use of a full Reynolds stress model. Therefore, the 
expression for the pseudo-elastic stress used here is 
 

( )2
2

1

12
2

p n

i j i jv e i
ij p

j c i j

u u u uK K Us C
A x L u uε

ρ
µ

µ

+ −

−

 ∂ ′ = × ×
∂  

 (6) 

 
with 
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The pseudo-elastic stress vanishes in the Newtonian limit (n=1 and p=1), an effect properly accounted for by 

parameter C , which depends on parameter C0. This parameter takes on a new value different from that in Cruz et al. 
(2004) and was obtained from optimization of the Reynolds stress model predictions. 

Lc is a spatial scale of turbulence, 3
c RL u ε= , accounting high Reynolds number flow away from the wall and the 

damping effect of the approaching wall. The velocity scale, uR, is defined by 
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where α=2. uw is a wall velocity scale here given by 1 4( )w w wu υ ε= ⋅ , based in the viscous length scale, u=υ/l, and 
related to the energy-dissipating eddies. 

In the Reynolds stress transport equation we identify terms which are identical in form to those for Newtonian 
fluids and new terms associated with the non-Newtonian fluid characteristics, which are those involving fluctuating 
viscosities. Of these, according to the order of magnitude analysis made by Pinho (2003), the following terms could be 
neglected: 
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The remaining non-Newtonian terms are modelled as follows assuming high Reynolds number turbulence:  
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where CV1 and CV2 are parameters to be quantified later.  

All the other terms are Newtonian and are modelled according to the original model of Lai and So (1990): 
 

- Turbulent diffusion of the Reynolds stresses, T
ijD , 

 

j k i jk i
i j k s i l j l k l

k k l l l

u u u uu uku u u C u u u u u u
x x x x x

ρ ρ
ε

  ∂ ∂∂∂ ∂  − = + +  ∂ ∂ ∂ ∂ ∂    

 (13) 



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006 – Paper CIT06-0805 
 
 

- The molecular diffusion of the Reynolds stresses, v
ijD , 
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assuming at this stage a lack of correlation between fluctuating viscosity and the fluctuating second derivative of the 
Reynolds stress.  
 

- The dissipation of the Reynolds stresses, ijε , 
 

2 2j ji i
ij

k k k k

u uu u
x x x x

µ µ ρε
∂ ∂∂ ∂′− − =

∂ ∂ ∂ ∂
,  (15) 

 
is modelled considering anisotropy and directional effects near walls, by 
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- The pressure-strain, *

ijφ ,  
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is modelled by equation (18) considering the high Reynolds number contribution, ijφ , and the wall approximation 

contribution, , ,1ij w wfφ . 
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The transport equation for the rate of dissipation of turbulent kinetic energy of Lai and So's model (1990) is used 
without any modification and is given by 
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Finally, the various parameters constants and damping functions are given in the next table. 

 
Table 1. Constants and damping functions of the Lai and So (1990) Reynolds stress model 

Constants 

1 1.5C =  2 0.4C =  
1

1.35Cε =  
2

1.8Cε =  0.11sC =  
* 0.45α =  0.15Cε =  1 1.8VC = −  2 0.2VC =  0 0.95C = −  

Damping functions 

2

,2 exp
64

T
w

Rf
  = −  
   
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The turbulent Reynolds number, RT, is defined as 

 
2

T
kR ρ

µε= ,  (24) 

 
The damping function fw,1 of Lai an So (1990) was modified to account for viscoelastic effects and is given by 

 

( )0.86

,1 expwf fµ = −  
,  (25) 

 
where fµ  is the original damping function derived by Cruz and Pinho (2003) in the context of their k-ε model.   
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This function accounts for wall effects very much as Van Driest's function do for Newtonian fluids and is 

influenced by the rheological properties of the fluids measured by the shear-thinning intensity (n<1) and Trouton ratio 
thickening (p>1) of the extensional viscosity. The parameters, which were quantified by performing extensive 
calculations, are identical to C=25 and A+=40, and x2

* is a wall coordinate normalised by the wall viscosity 
( )*

2 2w wx u x ν=  and using 1 4( )w w wu υ ε= ⋅ . 

 
4. Results and discussion 
 

The program used to carry out the numerical simulations is based on a finite-volume discretization and the TDMA 
solver is used to calculate the solution of the discretized algebraic governing equations. The mesh is non-uniform with 
199 cells across the pipe, giving mesh-independent results for Newtonian and non-Newtonian fluids within 0.1%. The 
full domain in the transverse direction is mapped, hence only the following wall boundary conditions need to be 
imposed:   
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The turbulence model was calibrated using the experimental data from Escudier et al. (1999) for their 0.125% PAA 

aqueous solution, following the philosophy of Cruz and Pinho (2003), Cruz et al. (2004) and Resende et al. (2006). 
Then, the model is tested for the remaining viscoelastic fluids, 0.2% XG, 0.25% CMC and 0.09% / 0.09% XG / CMC 
without any change to the turbulence model. 
 
4.1. Newtonian fluids 
 

The modification of the damping function fw,1 can severely affect predictions for Newtonian fluids, so here we 
assess that effect. The modification of fw,1  was carried out to bring into the model the capability to predict flows of 
viscoelastic fluids, but the changes relative to the predictions with the original formulation of Lai and So (1990) were 
minimized. For Newtonian fluids the error in the Darcy friction coefficient for fully-developed pipe turbulent flows, for 
a Reynolds numbers of 7430, is negligible, relative to the predictions with the original model of Lai and So (1990). This 
can be observed in the comparison between the mean velocity profiles in wall coordinates in Figure 1. At larger 
Reynolds numbers, the differences relative to the predictions of the original Lai and So model are also negligible.  

The corresponding profiles of the normalized turbulent kinetic energy and Reynolds normal stresses can be 
observed in the Figure 2. Comparing the results of the present model with those model of Lai and So (1990) we can see 
a small deterioration of the turbulent kinetic energy predictions away from the wall and consequently a small decreased 
of quality of the normalised Reynolds normal stresses distribution, defined in Eq. (27), 
 

22 2
31 2

1 2 3' ; ' ; ' uu uu u uu u uτ τ τ

+ + += = = ,  (27) 

 
where uτ is the friction velocity. The spatial coordinate x2

+ is normalized with the wall viscosity and the friction velocity 
( )2 2 wx u xτ ν+ = . 
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Figure 1. Comparison between the predicted and the measured mean velocity profile for fully-developed turbulent pipe 
flow of Newtonian fluid at Re=7430 in wall coordinates. 
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Figure 2. Comparison between the predicted and the measured profiles of normalized turbulent kinetic energy and 
Reynolds normal stresses for fully-developed turbulent pipe flow of Newtonian fluid at Re=7430 in wall coordinates: ○ 

k+, □ u1’+, ◊ u3’+, ∆ u2’+ data of Durst et al. (1995); — Present model; - - Lai and So model (1990). 
 
4.2. Non-Newtonian fluids 
 

We compare predictions with the experimental data for turbulent fully-developed pipe flow of Escudier et al. 
(1999) and Resende et al. (2006). The various non-Newtonian terms in the momentum and Reynolds stress equation 
have an impact at different locations in the flow. The pseudo-elastic stress in the momentum equation is basically 
relevant in the buffer layer, but this is sufficient to affect the flow across the whole pipe and is especially important to 
create drag reduction. Indeed, and in contrast to the k − ε  model of Cruz et al. (2004), where the drag reduction was 
basically achieved by a reduction of the eddy viscosity, this Reynolds stress model is truer to the real behaviour of 
polymer solutions because the drag reduction is achieved by the increasing importance of this new stress as it should 
according to DNS simulations that show the drag reduction being achieved by the increasing role of the polymer stress 
(τ p ). In this Reynolds stress model, the pseudo-elastic stress values are larger than in the model of Cruz et al [2], but 
they still have a negative sign. This negative sign is not a deficiency of the model because the polymer contribution to 
the total extra stress equals the sum of the pseudo-elastic stress with part of the molecular shear stress, i.e. 
τ p = 2µSxy + 2µ 'sxy − 2µsSxy  where µs  is the solvent viscosity (in the present case water). Therefore, the polymer 
shear stress remains positive, increases with drag reduction, as it should, and when added to the positive Reynolds shear 
stress and positive solvent shear stress the total equals the linear stress variation across the pipe. This is so even though 
the deduction of the model for the pseudo-elastic stress was based in the same philosophy of Cruz et al. (2004). 

As the pseudo-elastic stress increases with drag reduction there is also a small increase of k+, an improvement over 
the k − ε  closure developed by Cruz et al. (2004). Finally, and in contrast to the k − ε  model where the pseudo-
elastic stress helped to improve the predictions, but was not essential to obtain drag reduction, in the Reynolds stress 
closure its incorporation in the balance of momentum is essential to obtain drag reduction, and the new non-Newtonian 
terms in the transport equation are also required. 
 
4.2.1. Measured polymer solutions  
 

The mean velocity profile in wall coordinates for the 0.125% PAA solution at Re=42900 can be observed in Figure 
3. Comparing with the previous model of Cruz et al. (2004) there is a better behaviour of the mean velocity profile is 
spite of both models predict well the Darcy friction factor. 

The profiles of turbulent kinetic energy and of the Reynolds normal stresses in Figure 4 show that k and 2
1u  are 

underpredicted near to the wall, especially in the region of the peak stress. The prediction of 2
3u  is good, but there is 

also an underprediction of 2
2u . 
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Figure 3. Comparison between the predicted and measured mean velocity profile for fully-developed pipe turbulent 
flow with the 0.125% PAA solution at Re=42900 in wall coordinates. 
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Figure 4. Comparison between the predicted and the measured profiles of normalized turbulent kinetic energy and 
Reynolds normal stresses for fully-developed turbulent pipe flow of 0.125% PAA fluid at Re=42900 in wall 

coordinates: ο k+ data of Escudier et al. (1999);□ u1’+, ◊ u3’+, ∆ u2’+ data of Resende et al. (2006); — Present model; — 
- Resende et al. (2006). 

 
For the 0.25% CMC fluid the predictions of the mean velocity profile and turbulent quantities at Re=16600 are 

presented in Figure 5 and Figure 6, respectively. The mean velocity profile shows a good agreement with the 
experiments. In terms of the turbulent quantities, these are well predicted in terms of magnitude, but the peak axial 
normal stress and k are shifted to higher values of 2x + . 
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Figure 5. Comparison between the predicted and measured mean velocity profile for fully-developed pipe turbulent 
flow with the 0.25% CMC solution at Re=16600 in wall coordinates. 
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Figure 6. Comparison between the predicted and the measured profiles of normalized turbulent kinetic energy and 
Reynolds normal stresses for fully-developed turbulent pipe flow of 0.25% CMC fluid at Re=16600 in wall 

coordinates: ο k+ data of Escudier et al. (1999);□ u1’+, ◊ u3’+, ∆ u2’+ data of Resende et al. (2006); — Present model; — 
- Resende et al. (2006). 

 
The prediction of the mean velocity profile for the blend (0.09% / 0.09% CMC / XG) solution, at Re=45200, match 

the experimental data, as seen in Figure 7. For the 0.2% XG solution, at Re=45200, exist a small deficit of the mean 
velocity profile, Figure 8. Comparing with the previous model of Cruz et al. (2004) there were significant improves, 
especially with the 0.2% XG fluids.  

It must be emphasised at this stage that the predictions for these two fluids, and in particular for the 0.2% XG 
solution, are significantly better than was previously achieved by any of the first-order closures developed in the past 
for viscoelastic fluids (2003; 2004; 2006), an important success of the current Reynolds stress model. 
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Figure 9 for the blend and Figure 10 for the 0.2% XG show that, as for the previous two non-Newtonian fluids, the 
axial and radial Reynolds normal stresses and k are underpredicted near the wall, with the peak of the axial normal 
stress and k shifted to higher values of 2x + . For the 0.2% XG solution the tangential Reynolds normal stress is slightly 
over-predicted. 

So, and as a general conclusion regarding predictions of the turbulent quantities, there is in almost all cases an 
underprediction in k, 2

1u  and 2
2u  near the wall, whereas 2

3u  is usually well predicted.  
 

0

5

10

15

20

25

30

35

40

45

50

0 1 10 100 1000x2
+

u 1
+

Escudier et al (1999)

Resende et al. (2006)

Present model

u+=y+

Virk's MDRA

u+=(1/0.41)ln (y+)+5

 
 

Figure 7. Comparison between the predicted and measured mean velocity profile for fully-developed pipe turbulent 
flow with the 0.09% / 0.09% CMC / XG solution at Re=45300 in wall coordinates. 
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Figure 8. Comparison between the predicted and measured mean velocity profile for fully-developed pipe turbulent 
flow with the 0.2% XG solution at Re=3900 in wall coordinates. 
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Figure 9. Comparison between the predicted and the measured profiles of normalized turbulent kinetic energy and 
Reynolds normal stresses for fully-developed turbulent pipe flow of 0.09% / 0.09% CMC / XG fluid at Re=45300 in 

wall coordinates: ο k+ data of Escudier et al. (1999);□ u1’+, ◊ u3’+, ∆ u2’+ data of Resende et al. (2006); — Present 
model; — - Resende et al. (2006). 
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Figure 10. Comparison between the predicted and the measured profiles of normalized turbulent kinetic energy and 
Reynolds normal stresses for fully-developed turbulent pipe flow of 0.20% XG fluid at Re=39000 in wall coordinates: ο 

k+ data of Escudier et al. (1999);□ u1’+, ◊ u3’+, ∆ u2’+ data of Resende et al. (2006); — Present model; — - Resende et 
al. (2006). 

 
5. Conclusions 
 

A Reynolds stress model has been developed to predict the flow of viscoelastic solutions based on a generalised 
Newtonian constitutive equation modified to account for elastic effects. The Reynolds stress model is a modified 
version of the Lai and So (1990) low Reynolds turbulence model which includes several new non-Newtonian terms. 
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Closures for all these new terms were developed as well as for the pseudo-elastic stress term appearing in the 
momentum equation. 

The predictions of this model are remarkably good for all fluids tested, four different aqueous solutions of polymer 
and this was assessed in terms of the friction factor, mean velocity and the three Reynolds normal stresses. The less 
successful achievement was in predicting these Reynolds stresses were in general the model underpredicted 2

1u  near 

the wall and 2
2u , but it was able to predict well the 2

3u  component.  
A significant improvement over previous models for viscoelastic fluids are the successful predictions for the two 
solutions based on the semi-rigid xanthan gum molecule, for which the linear and nonlinear k − ε  models of Cruz et 
al. (2004) and Resende et al. (2006) underpredicted the measured levels of drag reduction. 

Therefore, the present model represents a significant improvement over previous turbulence models for viscoelastic 
solutions, all of which are of first-order. 
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